

UltraTech Cement Limited

Unit:Reddipalayam Cement Works

WELCOME

23rd National Award for Excellence in Energy Management 2022:Virtual Meet

Presenters

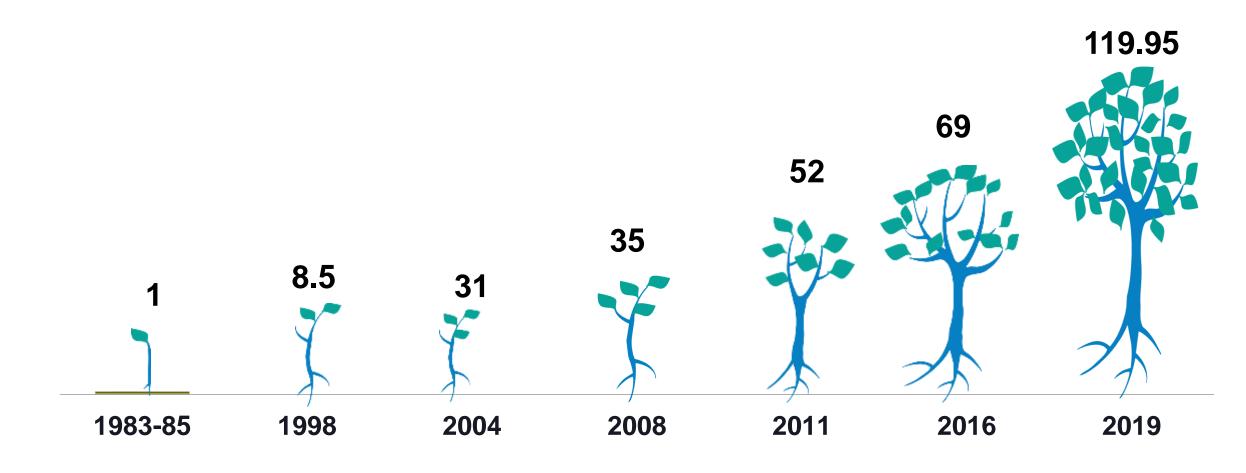
Mr. Ganesha Jayavelu FH Technical

Mr. S.Saravanan DH – Projects /Technical Services & WCM

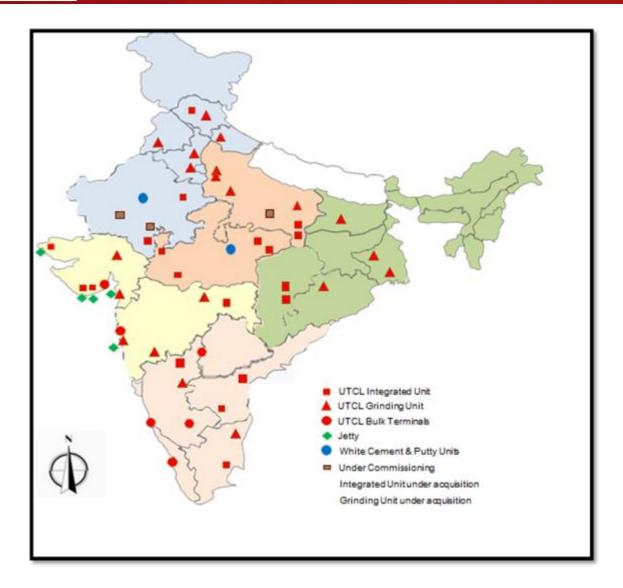
Mr. Ranjeet Desai SH – Process

Mr. A.G.Narasimmalu SH – WCM

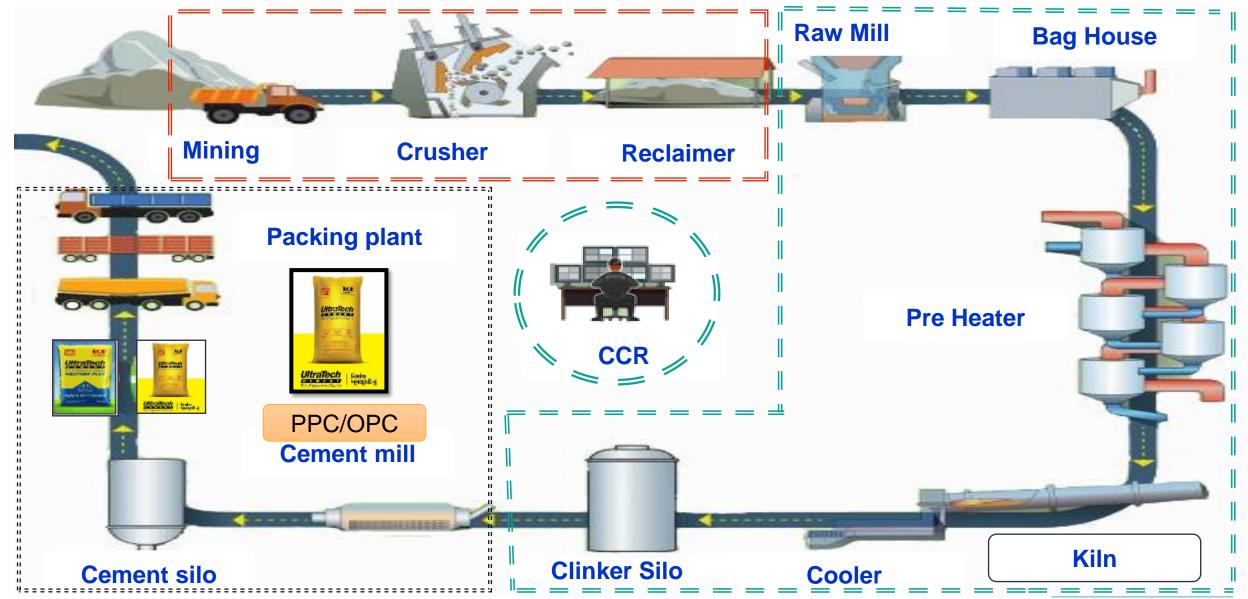
Contents


Business and Unit Overview	
Cement Manufacturing Process	
Unit Mile Stones	
\	
Various Certifications	
Reduction in SEC	
Encon Projects	
Green Supply chain Management	
	<u></u>
Energy Monitoring	
Improvement Projects	

UltraTech Journey

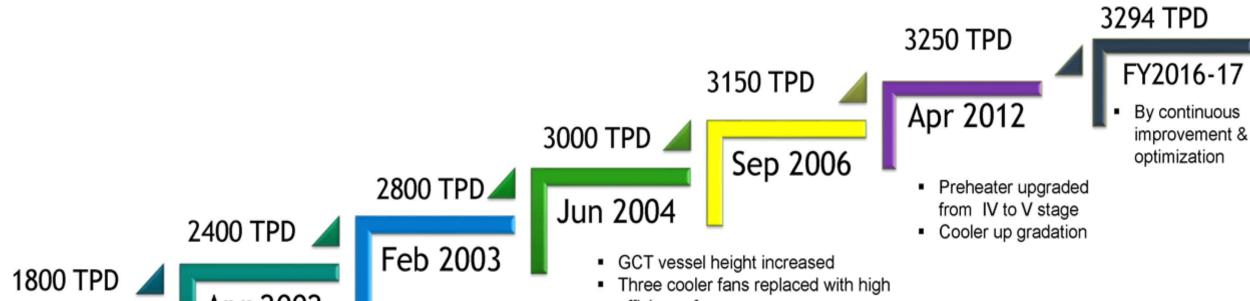

Cement Capacity Growth in MTPA

UltraTech Journey


UltraTech in Numbers						
MTPA of Grey Cement	119.95					
Ready Mix Concrete plant	170+					
UBS stores in India	3000+					
Integrated Units	22					
White Cement Unit	1					
Grinding Units	27					
Clinkerisation unit	1					
Bulk Terminals	8					
Captive Jetties	5					

Area of spread (RDCW)	RDCW Unit
Plant capacity	1.6 MTPA
Area of mines	188.62 Ha
Area of plant	125 Ha
Nearest air port	Trichy (75 km)

Manufacturing Process



Unit Mile stones

Feb 2000

 New Plant Commissioned Apr 2002

- Kiln Inlet modification
- Kiln feed bucket elevator speed increased from 1.5 to 1.7m/Sec
- Kiln speed increased from 3.2 to 5.5 RPM
 - TA duct dia increased from 2.1 M to 2.5 M
 - Cooler grate area increased from 52m2 to 72m2

- efficiency fans
- Modified Pre-heater twin cyclone Aerovane
- Clinker breaker Upgradation

Unit Overview

State of the art Cement Plant commissioned in the millennium year

- > 1st Unit in UTCL having Robo lab for total quality control from sampling to analysis
- State of art testing laboratory for Alternative fuels
- Designed for using multiple fuels
- Pioneer in using alternate fuel with pre-processing system
- Pioneer in Using alternate raw material (ETP Sludge)
- First Plant in the World to get CDM credit for use of Argo waste alternate fuel
- Packing facility with Centralized discharge from cement silo

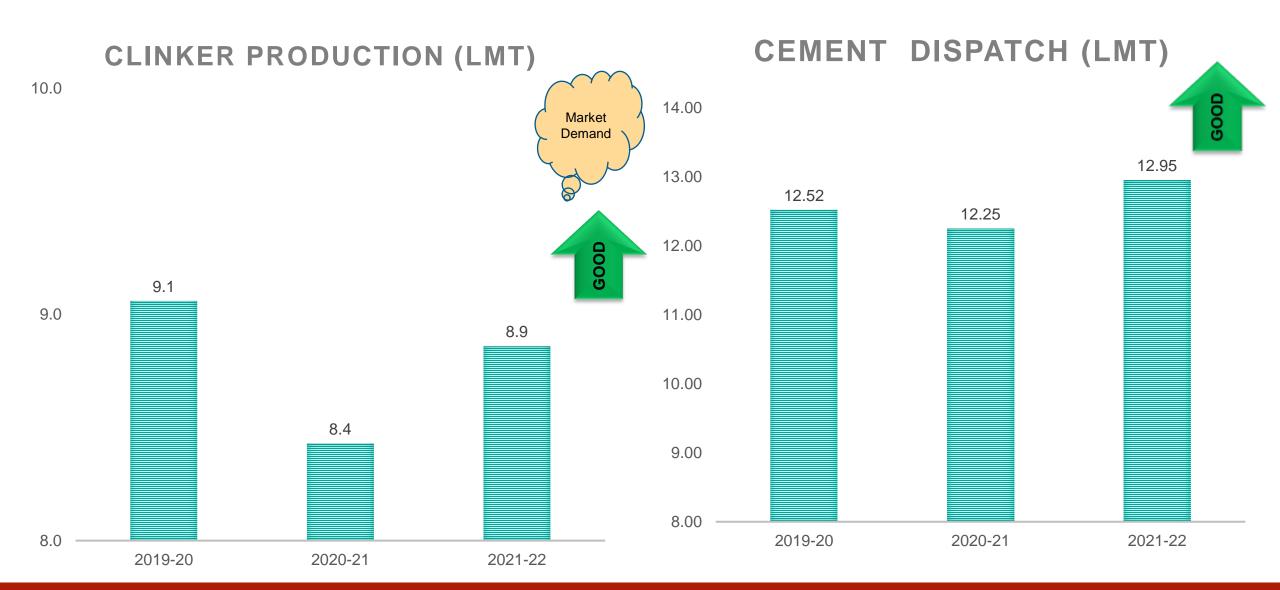
Management Systems

ISO: 9001 - Quality

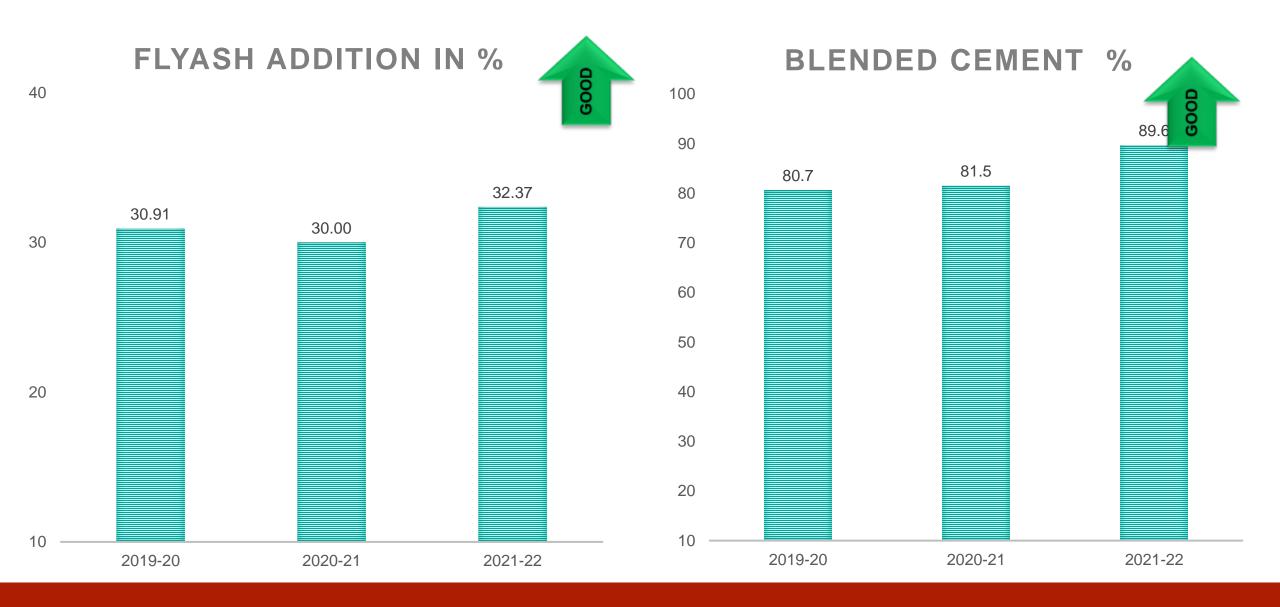
ISO:14001 Environment

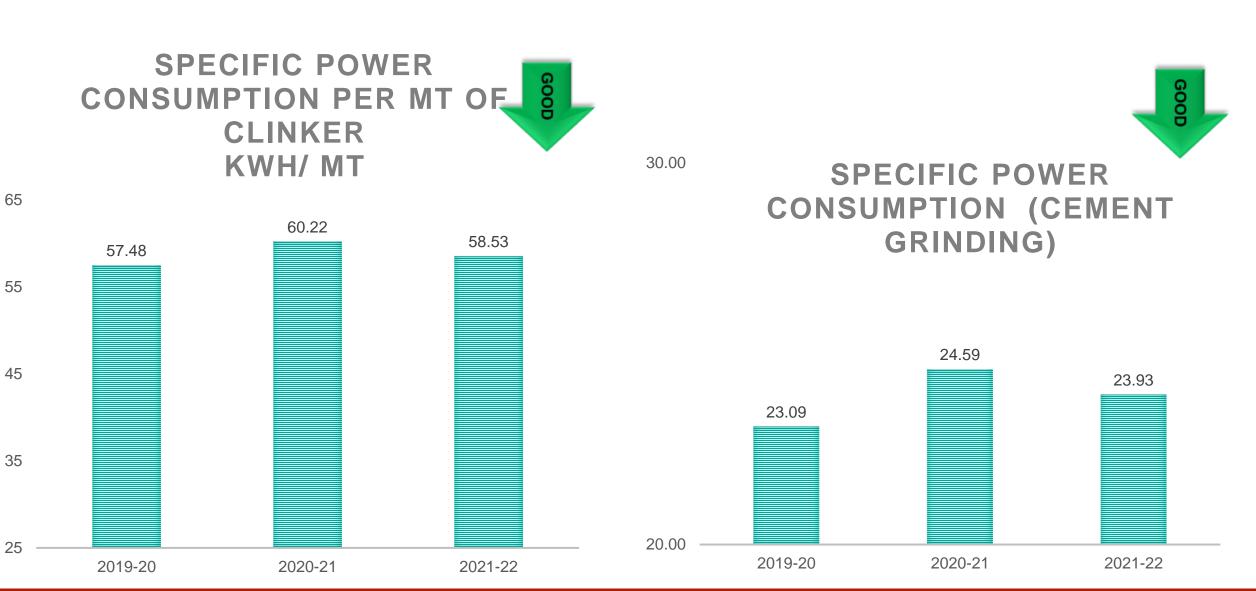
ISO:45001 -Safety

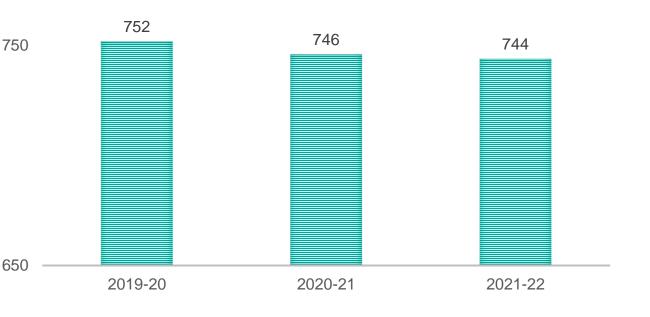
ISO:50001 EnMS

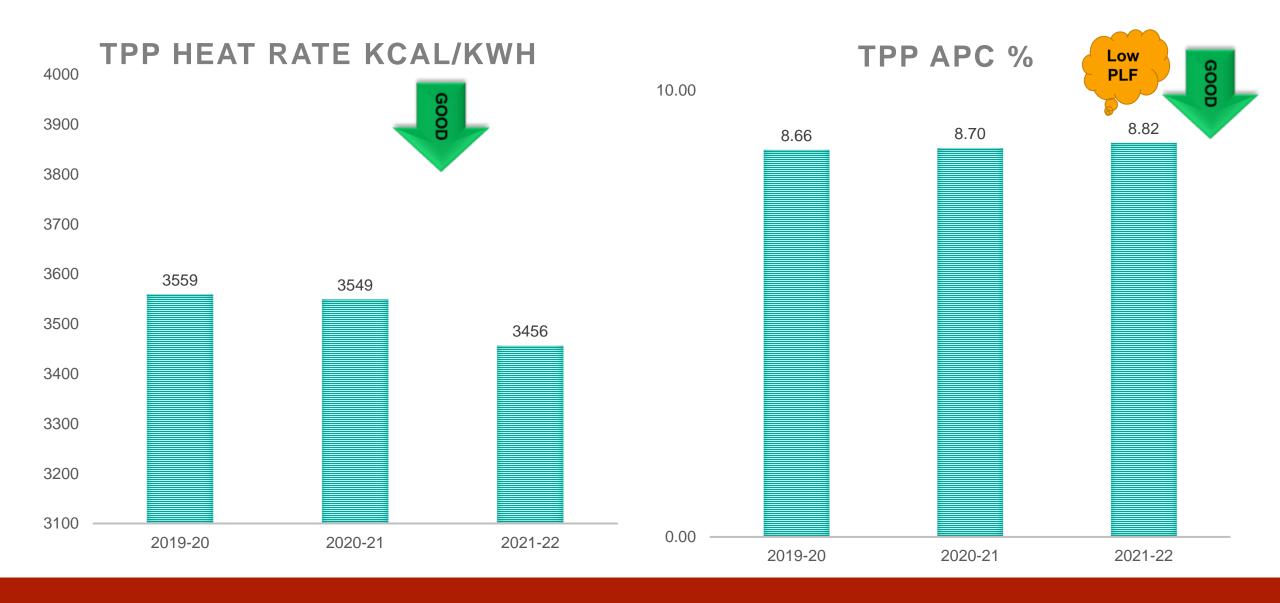


UNIT Performance

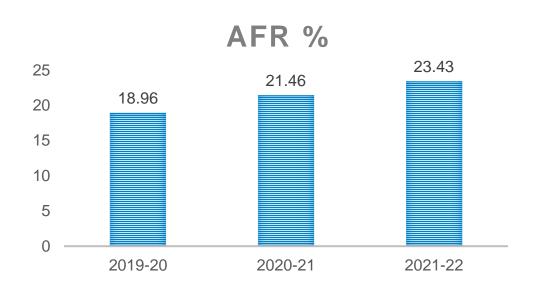


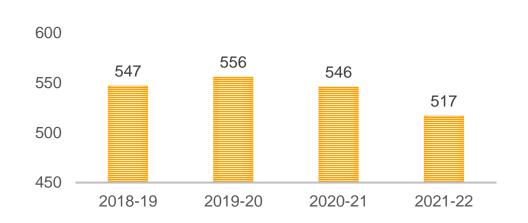




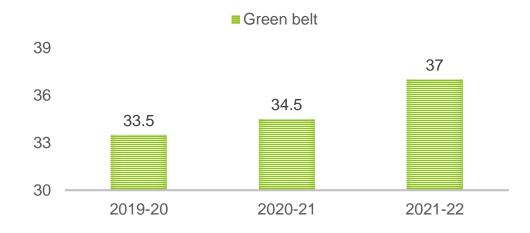

800.00

PAT TOE / Ton of Product

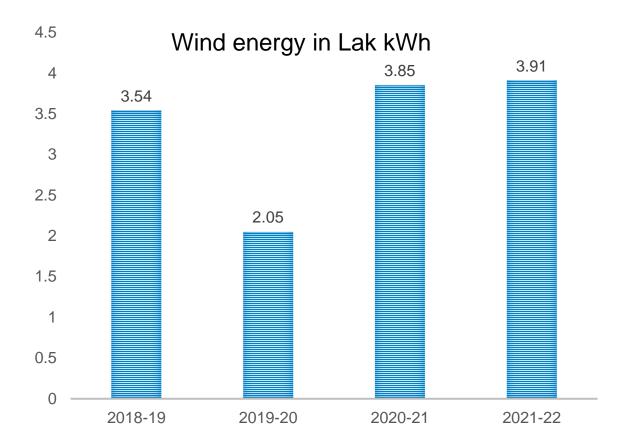


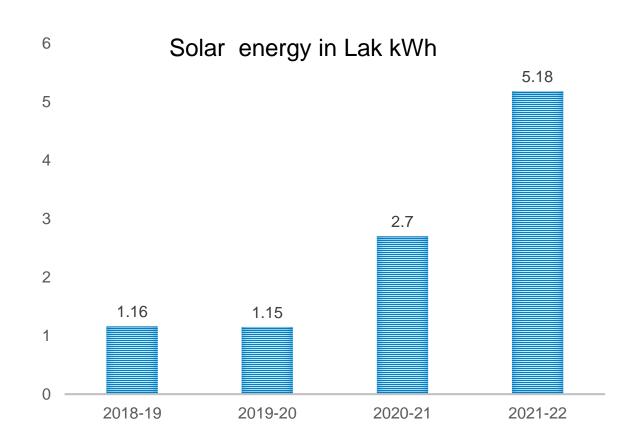


AFR & GREEN BELT Development

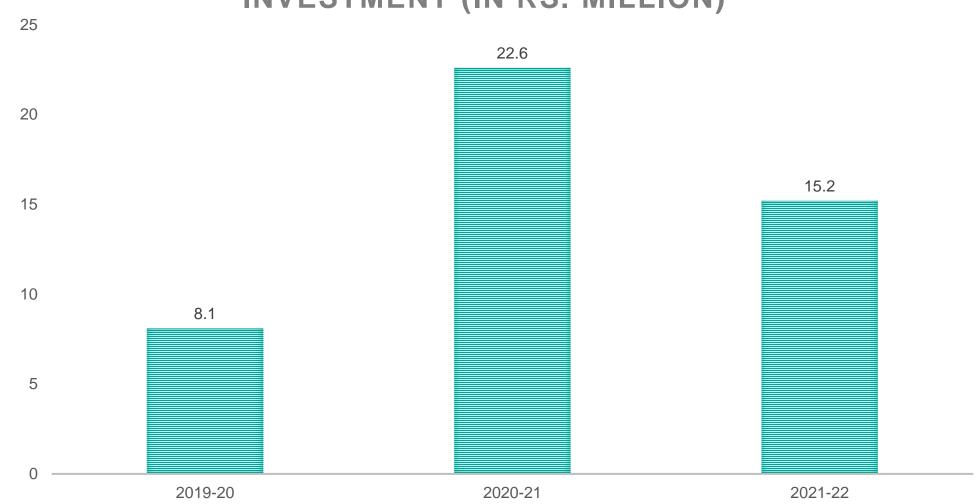


NET CO2 EMISSIONS
KG CO2/MT CEMENTITIOUS MATERIAL


GREEN BELT %



Utilization of Renewable Energy



Percentage of investment for Encon projects

List of Encon Projects Proposed in 2022 - 2023

No	Title of Project	Annual Electrical Saving	Annual Thermal Saving	Investme nt	Comment
		(Million kWh)	(Million Kcal)	(Rs in Million)	
1	Upgradation of Coal dosing system to Corollis	0.0205	0	33.4	Replacing the existing coal dosing FK pump system (two numbers out of four) with new generation coal dosing system
2	Replacement of Energy Efficient Air Compressors (600 CFM capacity each) at Cement Mill	0.215	0	0.21	Proposed in FY23 Capex cycle under ROI.
3	Replacement of 1 no Energy efficient Pump (rated capacity = 90 M3/h with matching Pumping Head) at WTP	0.021	0	0.01	Offer received from supplier for which PR will be initiated and implemented by Mar 2023.
4	To replace Cooling Water Pump/ Boiler Feed pump by Energy Efficient Pumps in CPP	0.224	0	0.15	Energy efficient Boiler feed pump PO Released and it's expected to receive at site in the month of Jul22.
5	Install Delta to Star Connection/ Downsize the Identified Motors (03 no's)	0.071	0	0.15	new VFD panel proposed in Capex FY23 - Capex approved and waiting for WBS
6	Replacement of Metal Halide lamps (174 no's) with LED lamps	0.152	0	0.52	HPSV lights are being replaced in phased manner.

List of Encon Projects implemented in 2021 - 2022

Slno	Title of Project	Year	Annual Electric al Saving (kWh)	Annual Electrical Cost Saving (Rs million)	The Say		1.5 3 0 0 0	Total Annual Saving s (Rs million)	Made (Rs	Paybac k (Month s)
1	Upgradation of Burner pipe.	2021- 2022	2.6812 5	6.11	0	0	0	6.11	17.2	33.78
2	Installation of double flap gate in Kiln PC	2021- 2022	8.125	3.6	0	0	0	3.6	18.8	62.67
3	To replace Screw Elements in 02 nos air Compressors in CPP	2021- 2022	71000	0.525	0	0	0	0.525	0.15	3.43
4	Improve PF of Transformers - 8 Nos	2021- 2022	19000	0.086	0	0	0	0.086	0.01	1.4

List of Encon Projects implemented in 2020 - 2021

Slno	Title of Project	Year	Annual Electric al Saving (kWh)	Annual Electric			Annual Therma I Cost Saving	Saving s (Rs	Made (Rs	Paybac k (Month s)
1	Replacement of 40 watt conventional tube light by 20 watt LED tube light	2020- 2021	246	0.483	0	0	0	0.483	0.383	0
2	Replacement of conventional ceiling fan by energy efficient BLDC Fan.	2020- 2021	1217	0.644	0	0	0	0.644	1.3	0

List of Encon projects implemented in 2019 -2020

SIno	Title of Project	Year	Annual Electric al Saving (kWh)	Annual Electric al Cost Saving (Rs million)	Annual Sav	Thermal ving	Thermal Cost	Savings (Rs	Investm ent Made (Rs million)	Paybac k (Months
1	Revamp the insulation on the main steam pipeline from boiler to turbine to bring down the temperature drop below 5 Deg C.	2019- 2020	0	0	650	MT	3.163	3.163	4	16
2	Arrest air ingress in Boiler APH outlet to ESP outlet	2019- 2020	380	0.173	0	0	0	0.173	0.01	0
3	Refurbishment and overhauling of Raw Mill Fan (Impeller change)	2019- 2020	5480	2.437	0	0	0	2.437	2.6	12

Improvement Projects

Burner Replacement

 -		
	100	
		v

Reduction of primary air consumption in burner.

Problem/ Background High primary air consumption in burner.

Solution/ Execution Replacing the existing burner pipe to reduce the specific heat consumption & uniform heat distribution across burning zone & minimize the Nitrogen Oxide emissions.

Result/ Benefit

3.5 kCal/kg clinker specific heat reduction. 2.6 lakh kwh power savings

Revamp the insulation on the main steam pipeline from boiler to turbine

	1		n	1	
		ᄃ		ш	C

To reduce the heat loss in main steam pipe line from boiler to turbine.

Problem/ Background Heat loss in the main steam pipeline from boiler to turbine.

Solution/ Execution Revamping of insulation on the main steam pipeline. Reduction of by power by improving Vacuum in condenser at CPP

Result/ Benefit

Improved Vacuum in condenser at CPP to 0.90 Kg/cm2 from existing level of 0.86 Kg/cm2. Saving of 650 MT coal

Installation of double flap gate in Kiln PC

	1		n	1	
		ᄃ		ш	C

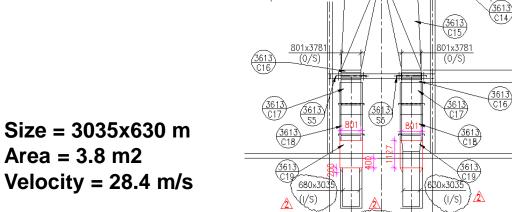
Reduction of false air ingress in the preheater circuit

Problem/ Background High ingress of false air into Kiln riser duct during AFR feeding.

Solution/ Execution Installation of double flap gate in the AFR feed chute to reduce the false air ingression leading to thermal energy & power losses.

Result/ Benefit 27015 kCal/kg clinker specific heat reduction.

Raw mill fan inlet box modification



Problem statement:

In Raw mill fan, the inlet velocity is in the order of 26.3m/sec, which is very high. By doing the inlet geometry change, there is a possibility of pressure drop reduction of at least 50-60 mmWg.

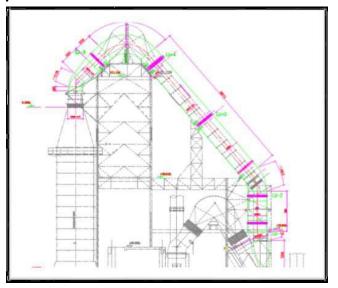
Action taken:

CFD analysis completed by the unit Team. Results are validated pressure velocity reduced by modifying the fan inlet box. Area increased from 3.8 m2 to 5.1 m2 and the velocity decreased from 28.4 m/sec to 20.8 m/sec

Size = 3035x830 m Area = 5.1 m2 Velocity = 20.8 m/s

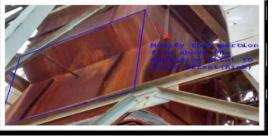
- Nesult			
Particular	UOM	Before	After
Raw mill Fan efficiency	%	71	74
Velocity at Raw mill in let box	m/s	28	21
Power saving	KWH	33 KW	/H

Result


Pressure reduction in BH inlet & GCT circuit

We did Pressure profile comparison with our group units and identified the scope for improvement &Study conducted by unit team to explore the possibility of pressure reduction in the circuit

Description	UOM	RDCW	KCW	APCW Unit-2	GCW
RM fan outlet to BH inlet duct Dia.	m	2.73	4.9	3.6	4
RM fan outlet to BH inlet duct Velocity	m/s ec	18.49	11.44	15.24	14
Bag house inlet draught in comp mode	mm wc	-90 to - 100	-55	-70 to -90	-45
By pass duct dia.	m	2.3	5.3	5.3	4.25
By pass duct velocity	m/s ec	38	14.9	16.7	17
Bag house/ESP draught in direct mode	mm wc	-177	-35	-50 to -70	-40 to -50


Power saving in direct mode with reduction of 60-70 mm is estimated to be about 150 KW and in case of Compound mode saving is estimated to be about 45 KW.

➤ Preheater fan to GCT inlet duct can be replaced with 3300 mm diameter duct to reduce the velocity 34 m/sec to 17 m/sec during direct mode operation, (However direct mode operation only 5% only.)

GCT to BH duct modification

➤GCT to ESP duct have higher velocity (21-22 m/sec)

> Ducts size may not be increase (layout constraints)

>2578 x 2224 mm duct kink to be modify as shown in Sketch 1& 2.

Green supply chain management

- ✓ UltraTech voluntarily joined the Cement Sustainability Initiative (CSI), from 2006
- ✓ Reverse logistics in, Raw material trucks
- ✓ Eye on wheel (GPS) to reduce TAT (Truck Turn around time).
- ✓ Maximizing PPC dispatches
- ✓ Maximizing alternate Raw materials usage
- ✓ Reducing types of lubrication by effective implementing Lub Management culture.
- ✓ Network optimisation
- ✓ Computer-based order management system with real-time
- ✓ Customer service level measurement on real-time basis
- ✓ GPS-based vehicle tracking system for dedicated fleet
- ✓ Automation at secondary service points like railheads and warehouses

Green supply chain Initiatives

Climate Change – Lower clinker factor, energy efficiency, waste heat recovery and generation of renewable energy are our key priorities

Resource Management - Efficient use of natural resources and reducing dependence on it by using alternative fuels and materials

Water Management – Our water management best practices consist of water recycling and reuse, rainwater harvesting and artificial aquifer recharge, and source vulnerability assessment

Waste Management - Reducing use of natural raw materials, utilization of waste from other industries for blended cements and using industrial waste as alternative fuel

Biodiversity Management - Working on tree plantation, green zone development, rehabilitation of exhausted mines and reclamation of land

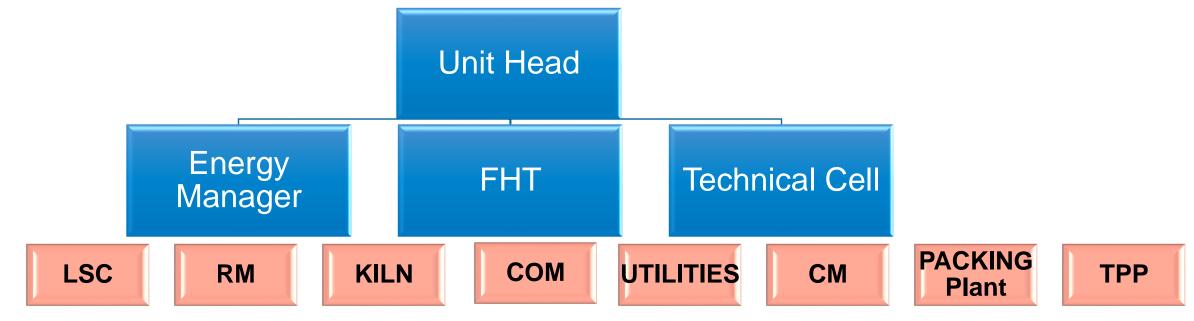
Unit's Best Practices

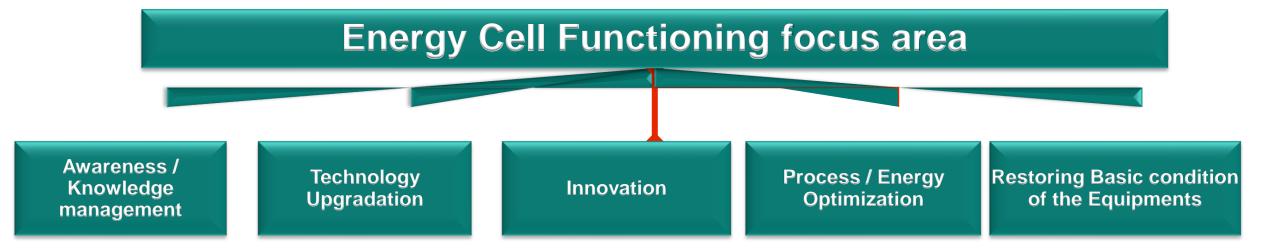
- 1. Safety Behaviour observation Rounds
- 2. Shop floor meetings
- 3. QCDIP performance monitoring Culture
- 4. Ownership culture
- 5. Daily self maintenance drive
- 6. Opportunity identification culture
- 7. Kaizen & suggestion portal
- 8. Mass communication Meeting
- 9. Multilevel review

- 10. Synergy meets
- 11. Dash boards
- 12. Sustainability & Energy Cell
- 13. Best Practice sharing sessions
- 14. Energy audits Internal / External
- **15. Projects Review**
- 16. Talent management

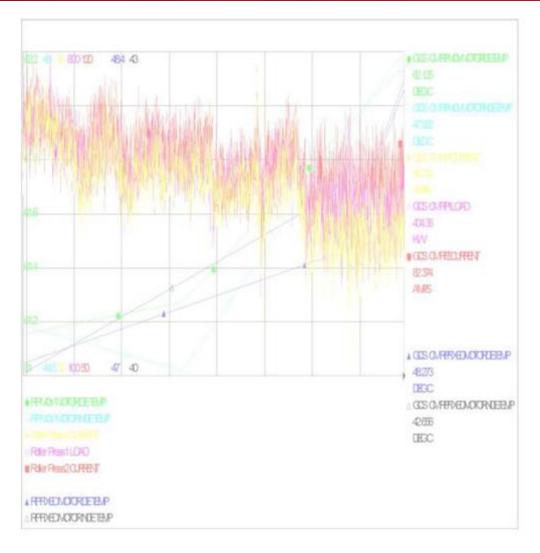
Approach Opportunity Identification

Team work & Employee involvement





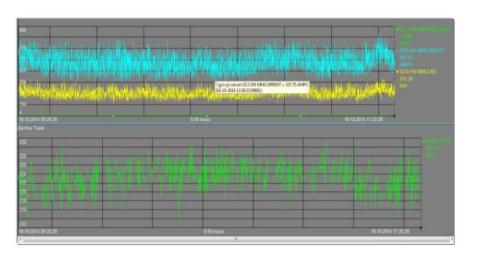
Unit Energy Cell Structure



Energy Monitoring and Reporting

KNOWLEDGE MANAGER SOFTWARE

- Individual MCC's wise and section wise power details.
- Speed, load, current and running hours of all critical equipment's.
- Compressors, water pumps and bore wells running hours.
- Start/stop power for all equipments
- Online monitoring of parameters in DCS.
- HT motors power and temperature details
- Plant stoppages are automatically booked in SAP through PI system



Energy Monitoring and Reporting

To measure, monitor, trend & compare power consumption of all major systems/ sub systems/ auxiliaries for improving Sp. Energy Consumption

- Online monitoring
- Elimination of human error
- Measurable outputs
- Report generation and archiving is possible
- PI system available in all PC and every engineer can monitor all parameters.
- Daily Report on Utilization of Various Fuels.
- Useful for analysis of operational deviation

Energy Monitoring and Reporting

EXPERT OPTIMISER

- Expert optimiser is an expert software package used for optimisation of the plant operation.
- Used in Rawmill, Coalmill, Kiln, Calciner, Cooler & Cement mill sections for optimisation.
- EO system results in optimised and smooth operation of the plant and very minimal operator intervention is required in plant operation.
- After implementing EO system, all major plant operation parameters are more stabilised and consistent.
- Quality parameters like clinker free lime, rawmill residue, cement mill blaine are more consistent.

ENCON - FUTURE PROJECTS

Project- 1 Upgradation of Coal dosing system to Corollis

Present Status:

Presently system operated through FK Pump

Proposed

With new coal dosing system, high accuracy of coal feeding will be ensured without any coal fluctuations/ flushing even with low fine coal bin levels. New system will give accurate counter readings which will help to avoid error in coal booking. Lignite/Indonesian Coal % also can be increased without any coal flushing problem.

Expected benefits:

This new dosing system will reduce the power consumption by 78 kWh/hr and a potential saving of 2 kCal/kg of thermal energy. Kiln operation will be more stable with proposed new coal dosing system. Stoppages of AFR feeding circuit with interlock of CO can be avoid.

Energy saving expected: 6.17 lakhs kwh ,20540 kCal/kg of Clinker

Project- 2 To Procure 2 nos. Energy Efficient Air Compressors (600 CFM capacity each) at Cement Mill

Present Status:

Presently the cement mill operating with ELGI Make Air Compressors CPP

Issues faced:

Both these Air Compressors as sp. Power Consumption – Very High To procure 2 no. 600 CFM Screw Type, Air Compressor with VFD Expected Specific Power Consumption = 140 watt per CFM at 5.1 Bar Expected Power Saving in

Air compressor # 1 = $(164 \text{ watt} - 140 \text{ watt}) \times 238 \text{ CFM } \times 24 \text{ Hr. } \times 350 \text{ days}$ = **47,980 Units.**

Expected annual saving in 2nd Compressor

Daily operating hours = 12 hours

Expected annual saving = 238 CFM (175 - 140) watt/CFM x 12 Hr. x 350 days

= 34,986 Units.

Total saving: 81000 units

Project- 3 To replace Cooling Water Pump/ Boiler Feed pump by Energy Efficient Pumps in CPP

Present Status:

At present there are 2 cooling water pumps in operation of 1600 m3/hr each, but the total flow achieved is 1900 m3/hr against required of 2600 m3/hr

Issues faced:

Due to reduction in cooling water flow of 700 m3/hr we are not able to maintain Turbine vacuum resulting in increase of specific steam consumption.

Energy efficient Boiler feed pump PO Released and it's expected to receive at site in the month of Jul22.

Expected savings: 224000 kWh

Project- 4 To replace Cement ball mill liners replaced with convention liner to classifying liners

Present System:

Existing up to 3.5Meter, M/S AIA engineering supplied low lift liners provided (2018) and after that up to 11.5 Mtr M/S Aqua Alloy Drag Peb liners provided (2018).

Issue Faced:

At present across the mill blain increase is low i.e. only 50-60 m2/Kg which is supposed to be 100-110 m2/Kg due to reverse classification of grinding media. Wear rate also increased from 28 gram/MT cement to 42 gram/MT Cement. Mill grinding efficiency has reduced which is resulting to more recirculation number and low productivity.

- 1. Reduction Cement Mill specific power consumption by 0.5 kWh/t Cement
- 2. Reduction in grinding media wear rate from 42 gm/t cement to 35 gm/t cement

Energy saving: 6.6 lakhs kWh Saving, 219145 kCal/kg of Clinker

Project 5: LED Lights for plant

Present Status:

Currently 35 numbers conventional flood light fitting are installed at LS stacker/Reclaimer shed & Main gate area

Issues faced.

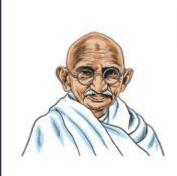
- 1. The power rating of each fitting is (2 X 400) Watt & consuming 6.4 KWH per day @ 8 hrs. per day running.
- 2. Spare & maintenance cost will increase due to conventional light fitting.
- 3. During rain lights will tripping due to water enter into choke box and fitting.

Expected saving of 63236 KWH /Year

Project 6 Replacement of energy efficient ceiling fans (28w)

Present Status:

Currently 400 numbers conventional FANS are available


Issues faced.

- 1. The power rating of each fan is (2 X 28) Watt & consuming 228 WH per day
- @ 12 hrs. per day running.
- 2. Spare & maintenance cost will increase due to conventional fans

Expected saving of 30000 KWH /Year

Be the Change You Wish To See In The World

ungamshi

Save Energy - Save Nation